Table of Contents

Physiology & Prevalence

<u>Explore EPI</u>

Causes of EPI

<u>Underlying Conditions Potentially Associated With EPI</u>

<u>Cystic Fibrosis</u>

Chronic Pancreatitis

Pancreatectomy

Acute Pancreatitis

<u>Celiac Disease</u>

Crohn's Disease

Gastric Surgery

Pancreatic Cancer

<u>Type 1 Diabetes</u>

Symptoms & Diagnosis

Symptoms and Diagnosis

Burden

<u>Burden</u>

Treatment

PERT in EPI

Administration

Mechanism of Action

<u>Dosage</u>

Treatment Insights

EPI Uncovered

Physiology and Prevalence

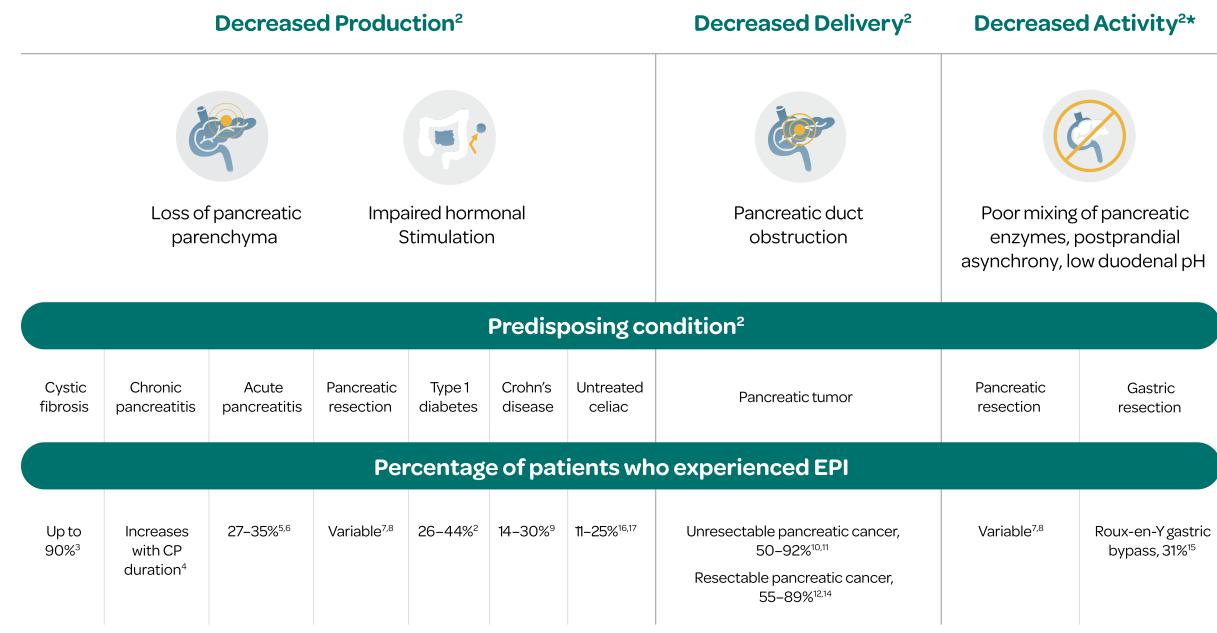
Explore EPI

What is

Exocrine Pancreatic Insufficiency (EPI)?

EPI=exocrine pancreatic insufficiency. CP=chronic pancreatitis

1. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19:7258-7266. 2. Othman MO, Harb D, Barkin JA. Introduction and practical approach to exocrine pancreatic insufficiency for the practical approach to exocrine pancreatic insufficiency. A, et al. Early decline of pancreatic function in cystic fibrosis patients with class 1 or 2 CFTR mutations. J Pediatr Gastroenterol Nutr. 2005;40(2):199-201. 4. Kempeneers MA, Ahmed Ali U, Issa Y, et al. Natural course and treatment of pancreatic exocrine insufficiency in a nationwide cohort of chronic pancreatitis. Pancreas. 2020;49(2):242-248. 5. Hollemans RA, Hallensleben NDL, Mager DJ, et al. Pancreatic exocrine insufficiency following acute pancreatitis: systematic review and study level meta-analysis. Pancreatology. 2018;18(3):253-262. 6. Huang W, de la Iglesia-García D, Baston-Rey I, et al. Exocrine pancreatic insufficiency following acute pancreatitis: systematic review and meta-analysis. Dig Dis Sci. 2019;64(7):1985-2005. 7. Lim PW, Dinh KH, Sullivan M, et al. Thirty-day outcomes underestimate endocrine insufficiency after pancreatic resection. HPB (Oxford). 2016;18(4):360-366. 8. Sabater L, Ausania F, Bakker OJ, et al. Evidence-based guidelines for the management of exocrine pancreatic insufficiency after pancreatic surgery. Ann Surg. 2016;264(6):949-958. 9. Singh VK, Haupt ME, Geller DE, Hall JA, Quintana Diez PM. Less common etiologies of exocrine pancreatic insufficiency. World J Gastroenterol. 2017;23(39):7059-7076. 10. Sikkens EC, Cahen DL, de Wit J, Looman CWN, van Eijck C, Bruno MJ. A prospective assessment of the natural course of the exocrine pancreatic function in patients with a pancreatic function in patients with a pancreatic function of survival in advanced pancreatic cancer. Dig Liver Dis. 2012;44(11):945-51. 12. Belyaev O, Herzog T, Chromik AM, Meurer K, Uhl W. Early and late postoperative changes in the quality of life after pancreatic surgery. Langenbecks Arch Surg. 2013;398(4):547-555. 13. Sikkens EC, Cahen DL, de Wit J, Looman CW, van Eijck C, Bruno MJ. Prospective assessment of the influence of pancreatic cancer resection on exocrine pancreatic function. Br J Surg. 2014;101(2):109-113. 14. Halloran CM, Cox TF, Chauhan S, et al. Partial pancreatic resection for pancreatic function. Br J Surg. 2014;101(2):109-113. 14. Halloran CM, Cox TF, Chauhan S, et al. Partial pancreatic resection for pancreatic resection for pancreatic resection for pancreatic resection for pancreatic function. 2011;11(6):535-545.15. Borbély Y, Plebani A, Kröll D, Ghisla S, Nett PC. Exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hurlstone DP, et al. Is exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2016;12(4):790-794.16. Leeds JS, Hopper AD, Hopper A Pharmacol Ther. 2007;25(3):265-271. doi:10.1111/j.1365-2036.2006.03206.x 17. Vujasinovic M, Tepes B, Volfand J, Rudolf S. Exocrine pancreatic insufficiency, MRI of the pancreas and serum nutritional markers in patients with coeliac disease. Postgrad Med J. 2015;91(1079):497-500. doi:10.1136/postgradmedj-2015-133262



ABBV-US-01157-MC

Symptoms **Physiology and Causes of EPI** Burden Treatment Prevalence and Diagnosis

EPI Is Associated With Conditions That Affect Production, Delivery, or Activity of Pancreatic Enzymes

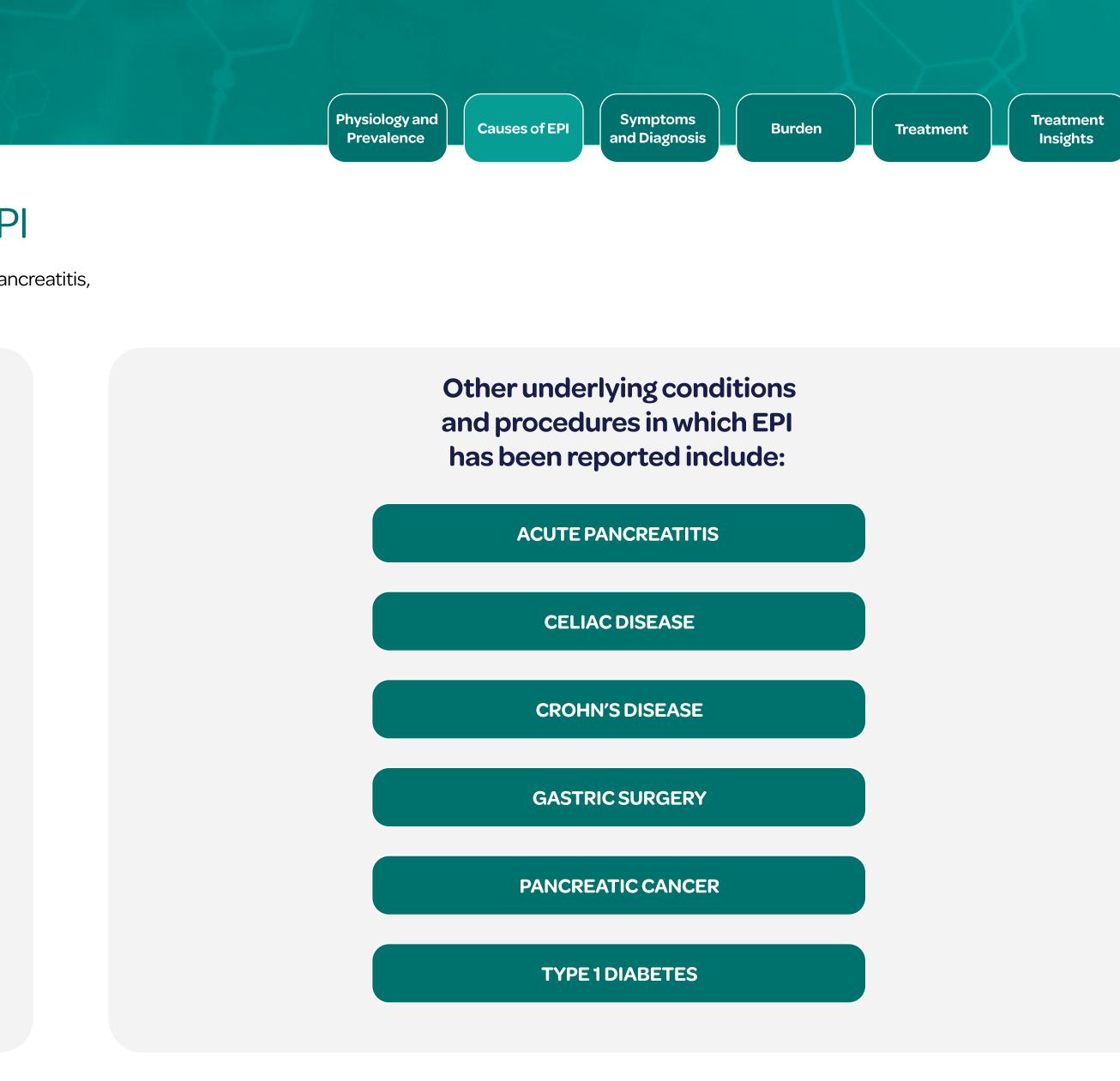
Exocrine pancreatic insufficiency (EPI) is a condition characterized by the deficiency of the exocrine pancreatic enzyme below the threshold required for normal digestion.¹²

*Despite normal secretion.

Underlying Conditions Potentially Associated With EPI

Although EPI is most commonly associated with conditions that damage the pancreatic parenchyma (ie, chronic pancreatitis, pancreatic surgery, pancreatic cancer), other conditions may also play a role in the development of EPI.

Exocrine Pancreatic Insufficiency (EPI) may be present in patients with the following underlying conditions and procedures:


CYSTIC FIBROSIS

CHRONIC PANCREATITIS

PANCREATECTOMY

EPI=exocrine pancreatic insufficiency.

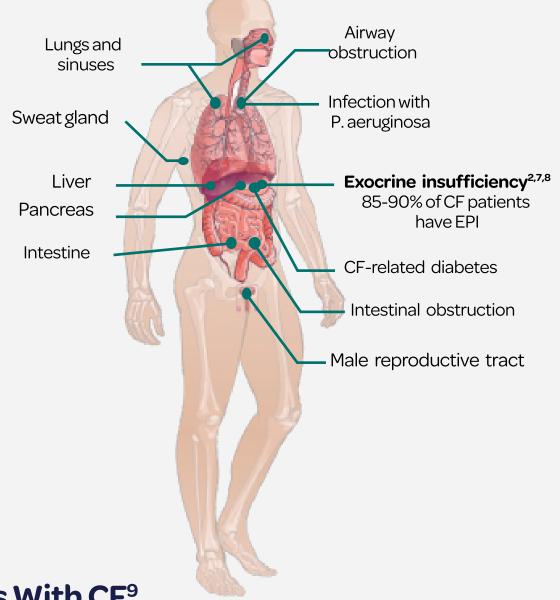
Cystic Fibrosis

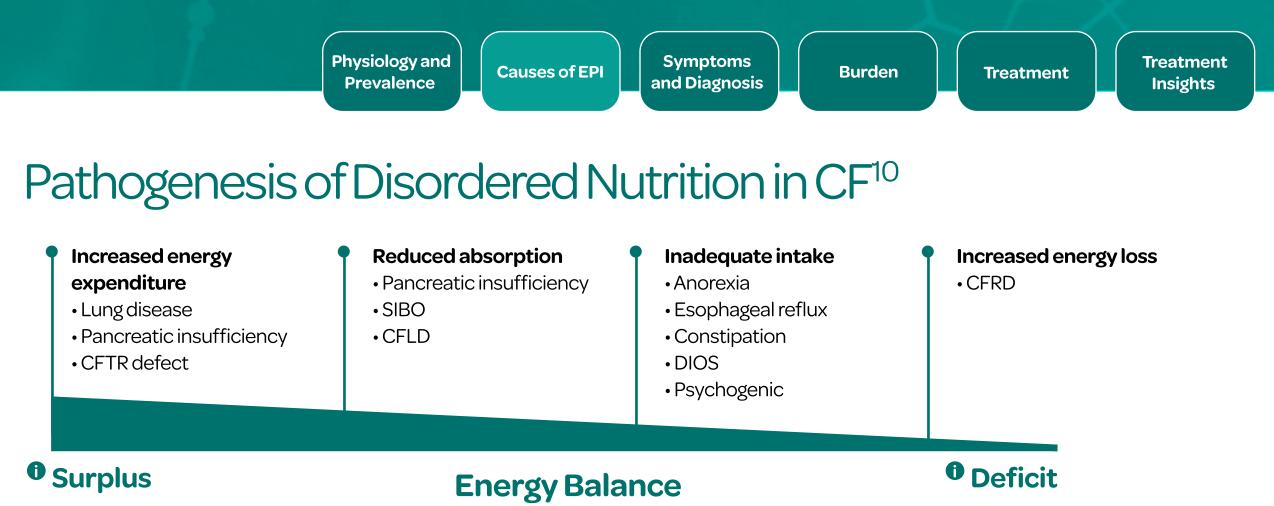
CF Affects Approximately 30,000 People in the US¹

Cystic fibrosis transmembrane conductance regulator (CFTR)²⁻⁶

- Regulates the efflux of Cl⁻ and HCO₃⁻
- Controls exocrine fluid Na⁺, osmolality, pH, viscosity, and volume

CFTR gene mutation²⁻⁶


- Impaired CFTR protein function or absence of protein
- Disruption of ductal fluid secretion and generation of thick mucus


Nutritional Status Is Critical in Patients With CF⁹

- Pulmonary function (FEV1% predicted) was much lower in adult patients with CF when weight-for-age percentile (WAP) was <10% at age 4 years
- Greater weight percentile at age 4 years is associated with better survival through age 18 years
 - As weight percentile increases, the proportion for survival also increases

CFLD=CF liver disease. CFRD=CF-related diabetes. DIOS=distal intestinal obstruction syndrome. SIBO=small intestinal bacterial overgrowth. PI=pancreatic insufficient. PS=pancreatic sufficient. 1. Cystic Fibrosis Foundation Patient Registry. 2018 Patient Registry Annual Data Report 2018; 2019. 2. Knowles MR. What is cystic fibrosis? N Engl J Med. 2002;347(6):439-442. 3. Wilschanski M. Patterns of GI disease in adulthood associated mutations in the CFTR gene. Gut. 2007;56(8):1153-1163. 4. Martiniano SL. Cystic fibrosis: a model system for precision medicine. Curr Opin Pediatr. 2016;28(3):312-317. 5. Borowitz D. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cyst Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Med. 2016;37(1):97-107. 11. Pallagi P. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas. 2015;44(8):1211-1233. 12. Bardeesy N. Pancreatic Cancer. 2002;2:897-909. 13. Culhane S. Malnutrition in cystic fibrosis: a review. Nutr Clin Pract. 2013;28(6):676-683. 14. Sathe MN. Gastrointestinal, Pancreatic, and Hepatobiliary Manifestations of Cystic Fibrosis. Pediatr Clin North Am. 2016;63(4):679-98. 15. Stevens T. Pathogenesis of chronic pancreatitis: an evidence-based review of past theories and recent developments. Am J Gastroenterol. 2004;99(11):2256-2270. 16. Borowitz D. Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr. 2005;41(3):273-85. 17. Schindler T. Nutrition Management of Cystic Fibrosis in the 21st Century. Nutr Clin Pract. 2015;30(4):488-500.

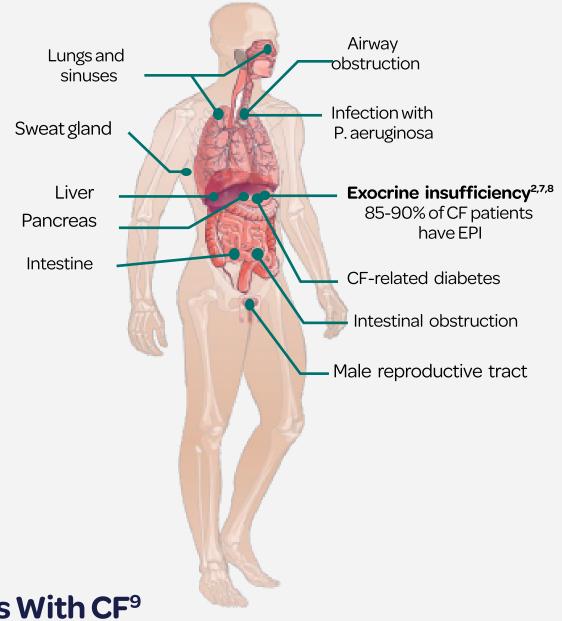
Cystic Fibrosis

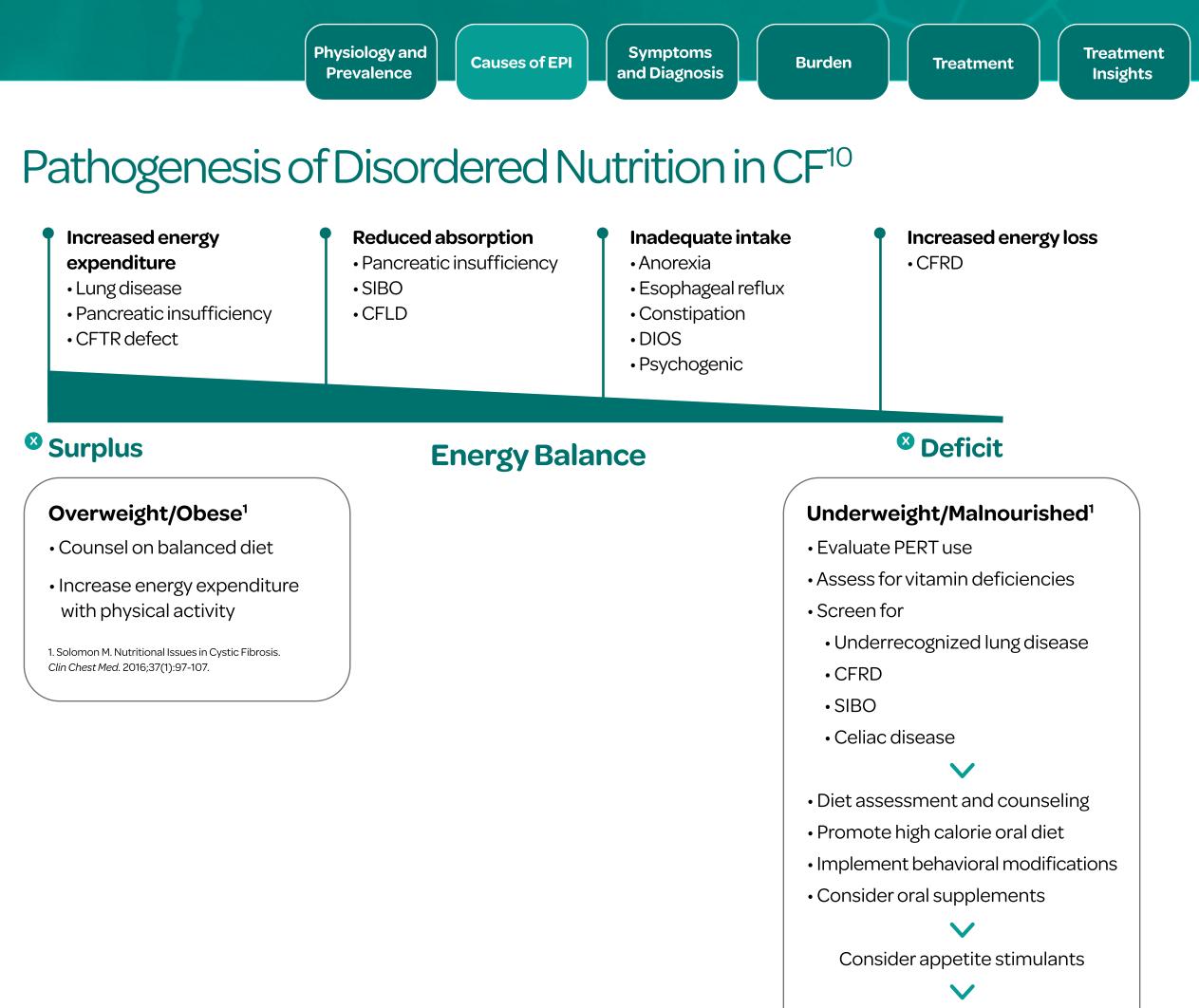
CF Affects Approximately 30,000 People in the US

Cystic fibrosis transmembrane conductance regulator (CFTR)²⁻⁶

- Regulates the efflux of Cl⁻ and HCO₂⁻
- Controls exocrine fluid Na⁺, osmolality, pH, viscosity, and volume

CFTR gene mutation²⁻⁶


- Impaired CFTR protein function or absence of protein
- Disruption of ductal fluid secretion and generation of thick mucus


Nutritional Status Is Critical in Patients With CF⁹

- Pulmonary function (FEV1% predicted) was much lower in adult patients with CF when weight-for-age percentile (WAP) was <10% at age 4 years
- Greater weight percentile at age 4 years is associated with better survival through age 18 years
 - As weight percentile increases, the proportion for survival also increases

CFLD=CF liver disease. CFRD=CF-related diabetes. DIOS=distal intestinal obstruction syndrome. SIBO=small intestinal bacterial overgrowth. PI=pancreatic insufficient. PS=pancreatic sufficient. 1. Cystic Fibrosis Foundation Patient Registry. 2018 Patient Registry Annual Data Report 2018; 2019. 2. Knowles MR. What is cystic fibrosis? N Engl J Med. 2002;347(6):439-442. 3. Wilschanski M. Patterns of GI disease in adulthood associated mutations in the CFTR gene. Gut. 2007;56(8):1153-1163. 4. Martiniano SL. Cystic fibrosis: a model system for precision medicine. Curr Opin Pediatr. 2016;28(3):312-317. 5. Borowitz D. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr. 2010;28(3):312-317. 5. Borowitz D. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr. 2010;28(3):312-317. 5. Borowitz D. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr. 2010;28(3):312-317. 5. Borowitz D. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40 Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Med. 2016;37(1):97-107.11. Pallagi P. The Physiology and Pathophysiology and genetics. Nat Rev Cancer. 2002;2:897-909.13. Culhane S. Malnutrition in cystic fibrosis: a review. Nutr Clin Pract. 2013;28(6):676-683.14. Sathe MN. Gastrointestinal, Pancreatic, and Hepatobiliary Manifestations of Cystic Fibrosis. Pediatr Clin North Am. 2016;63(4):679-98. 15. Stevens T. Pathogenesis of chronic pancreatitis: an evidence-based review of past theories and recent developments. Am J Gastroenterol. 2004;99(11):2256-2270. 16. Borowitz D. Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr. 2005;41(3):273-85. 17. Schindler T. Nutrition Management of Cystic Fibrosis in the 21st Century. Nutr Clin Pract. 2015;30(4):488-500.

Enteral nutrition

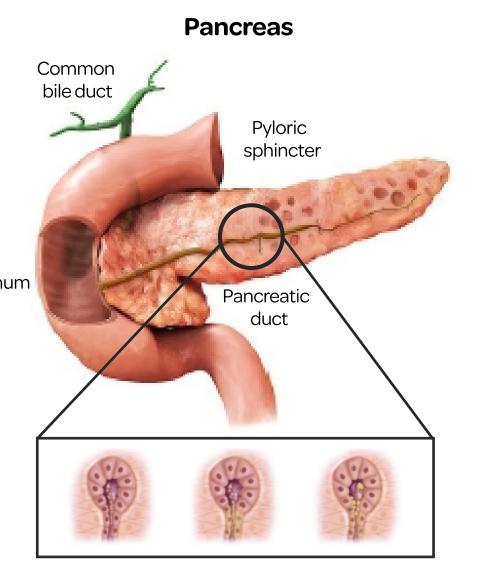
1. Solomon M. Nutritional Issues in Cystic Fibrosis. Clin Chest Med. 2016;37(1):97-107.

EPI in Cystic Fibrosis

Vitamin/ Mineral	Deficiency
Vitamin A	Night blindness
Vitamin D	Osteopenia/ osteoporosis
Vitamin E	Hemolytic anemia, peripheral neuropathy
Vitamin K	Coagulopathy
Calcium	Osteopenia/osteoporosis, fracture
Zinc	Loss of taste, failure to thrive
Essential Fatty Acids	Alopecia, skin rashes, easy bruising, increased infections, and poor growth

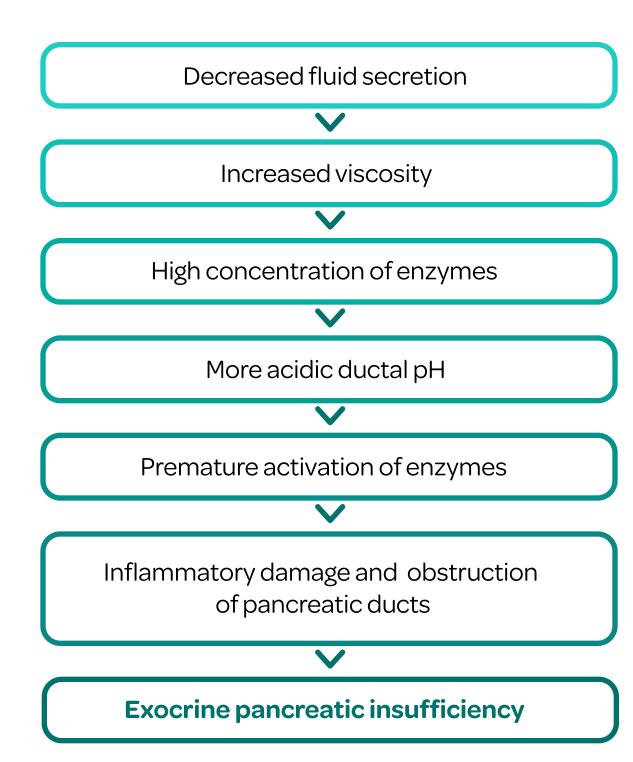
Low bone density | Unintended weight loss | Failure to reach nutritional and growth goals

EPI is present in up to 90% of patients with CF¹


ABBV-US-01157-MC

CFLD=CF liver disease. CFRD=CF-related diabetes. DIOS=distal intestinal obstruction syndrome. SIBO=small intestinal bacterial overgrowth. PI=pancreatic insufficient. PS=pancreatic sufficient. 1. Cystic Fibrosis Foundation Patient Registry. 2018 Patient Registry Annual Data Report 2018; 2019. 2. Knowles MR. What is cystic fibrosis? N Engl J Med. 2002; 347(6):439-442. 3. Wilschanski M. Patterns of GI disease in adulthood associated mutations in the CFTR gene. Gut. 2007; 56(8):1153-1163. 4. Martiniano SL. Cystic fibrosis: a model system for precision medicine. Curr Opin Pediatr. 2016;28(3):312-317. 5. Borowitz D. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cystic fibrosis. Pediatr Pulmonol. 2015;50(suppl 40):S24-S30. 6. Frizzell RA. Physiology of cyst Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Nat Rev Genet. 2015;16(1):45-56. 9. Yen EH. Better nutritional status in early childhood is associated with improved clinical application. Med. 2016;37(1):97-107. 11. Pallagi P. The Physiology and Pathophysiology of Pancreatic Ductal Secretion: The Background for Clinicians. Pancreas. 2015;44(8):1211-1233. 12. Bardeesy N. Pancreasic Cancer. 2002;2:897-909. 13. Culhane S. Malnutrition incystic fibrosis: a review. Nutr Clin Pract. 2013;28(6):676-683. 14. Sathe MN. Gastrointestinal, Pancreatic, and Hepatobiliary Manifestations of Cystic Fibrosis. Pediatr Clin North Am. 2016;63(4):679-98. 15. Stevens T. Pathogenesis of chronic pancreatitis: an evidence-based review of past theories and recent developments. Am J Gastroenterol. 2004;99(11):2256-2270. 16. Borowitz D. Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr. 2005;41(3):273-85. 17. Schindler T. Nutrition Management of Cystic Fibrosis in the 21st Century. Nutr Clin Pract. 2015;30(4):488-500.

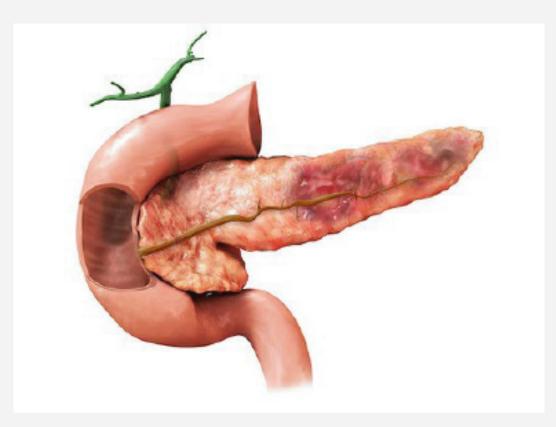
Duodenum


Mechanism of Exocrine Pancreatic Insufficiency¹¹⁻¹⁶

Consequences of Malabsorption^{9,10,17}

Malabsorption may lead to malnutrition

· Low levels of fat-soluble vitamins, macronutrients, and essential fatty acids



Insights

Chronic Pancreatitis

Chronic pancreatitis is a pathologic fibroinflammatory syndrome of the pancreas in individuals with genetic, environmental, and/or other risk factors who develop persistent pathologic responses to parenchymal injury or stress.¹

Adapted from: Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266

EPI=exocrine pancreatic insufficiency.

1. Whitcomb DC, Frulloni L, Garg P, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16(2):218-224. 2. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266. 3. Kempeneers MA, Ahmed Ali U, Issa Y, et al. Natural course and treatment of pancreatic exocrine insufficiency in a nationwide cohort of chronic pancreatitis. Pancreas. 2020;49(2):242-248.

ABBV-US-01157-MC

EPI in Chronic Pancreatitis

Reduction in Pancreatic Enzyme Quantity and/or Activity Causes EPI

EPI occurs when there is a reduction in pancreatic enzyme quantity and/or activity to a level below the threshold required to maintain normal digestion²

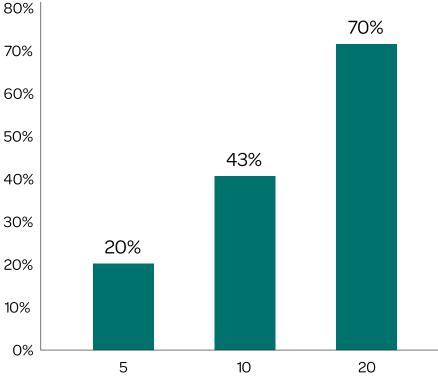
Destruction of pancreatic parenchyma³ Decrease in production of

pancreatic enzymes

Obstruction of the pancreatic duct³

Decrease in delivery of pancreatic enzymes and bicarbonate

Incidence of EPI Increases With Duration of Chronic Pancreatitis


Percentage of Chronic Pancreatitis Patients With EPI³

Alcohol Use Is a Risk Factor for EPI

 Patients with chronic pancreatitis due to alcohol use have a higher cumulative incidence of EPI

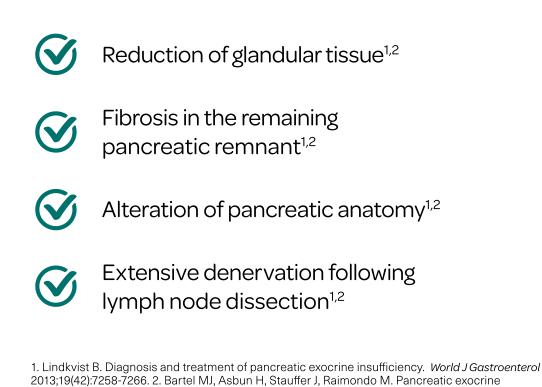
Percentage of Patients Who Develop EPI³

Years after chronic pancreatitis onset

Pancreatectomy

GI Complications Are Frequent After Pancreatectomy

GI Complications


- Exocrine pancreatic insufficiency^{1,3,4}
- Dumping syndrome²
- Delayed gastric emptying²
- Malnutrition⁵
- Small intestinal bacterial overgrowth⁶

Other complications can include fatty liver, diabetes, and bone disease⁷

EPI Is a Frequent Complication of Pancreatectomy

Post-surgical Pathophysiology

EPI occurs when there is a reduction in pancreatic enzyme quantity and/or activity to a level below the threshold required to maintain normal digestion.¹

EPI=exocrine pancreatic insufficiency. GI=gastrointestinal.

1. Berry AJ. Pancreatic surgery: indications, complications, and implications for nutrition intervention. Nutr Clin Pract. 2013;28(3):330-357. 2. Pappas S, Krzywda E, McDowell N. Nutrition and pancreaticoduodenectomy. Nutr Clin Pract. 2010;25(3):234-243. 3. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266. 4. Pezzilli R, Andriulli A, Bassi C, et al. Exocrine pancreatic insufficiency in adults: a shared position statement of the Italian Association for the Study of the Pancreas. World J Gastroenterol. 2013;19(44):7930-7946. 5. Decher N, Berry A. Post-Whipple: a practical approach to nutrition management. Pract Gastroenterol. 2012;36(8):30-42. 6. Muniz CK, dos Santos JS, Pfrimer K, et al. Nutritional status, fecal elastase-1, and 13C-labeled mixed triglyceride breath test in the long-term after pancreaticoduodenectomy. Pancreas. 2014;43(3):445-450. 7. Petzel MQB, Hoffman L. Nutrition implications for long-term survivors of pancreatic cancer surgery. Nutr Clin Pract. 2017;32(5):588-598.

ABBV-US-01157-MC

insufficiency in pancreatic cancer: a review of the literature. Dig Liver Dis. 2015;47(12):1013-1020.

Pancreatectomy

GI Complications Are Frequent **After Pancreatectomy**

GI Complications

- Exocrine pancreatic insufficiency^{1,3,4}
- Dumping syndrome²
- Delayed gastric emptying²
- Malnutrition⁵
- Small intestinal bacterial overgrowth⁶

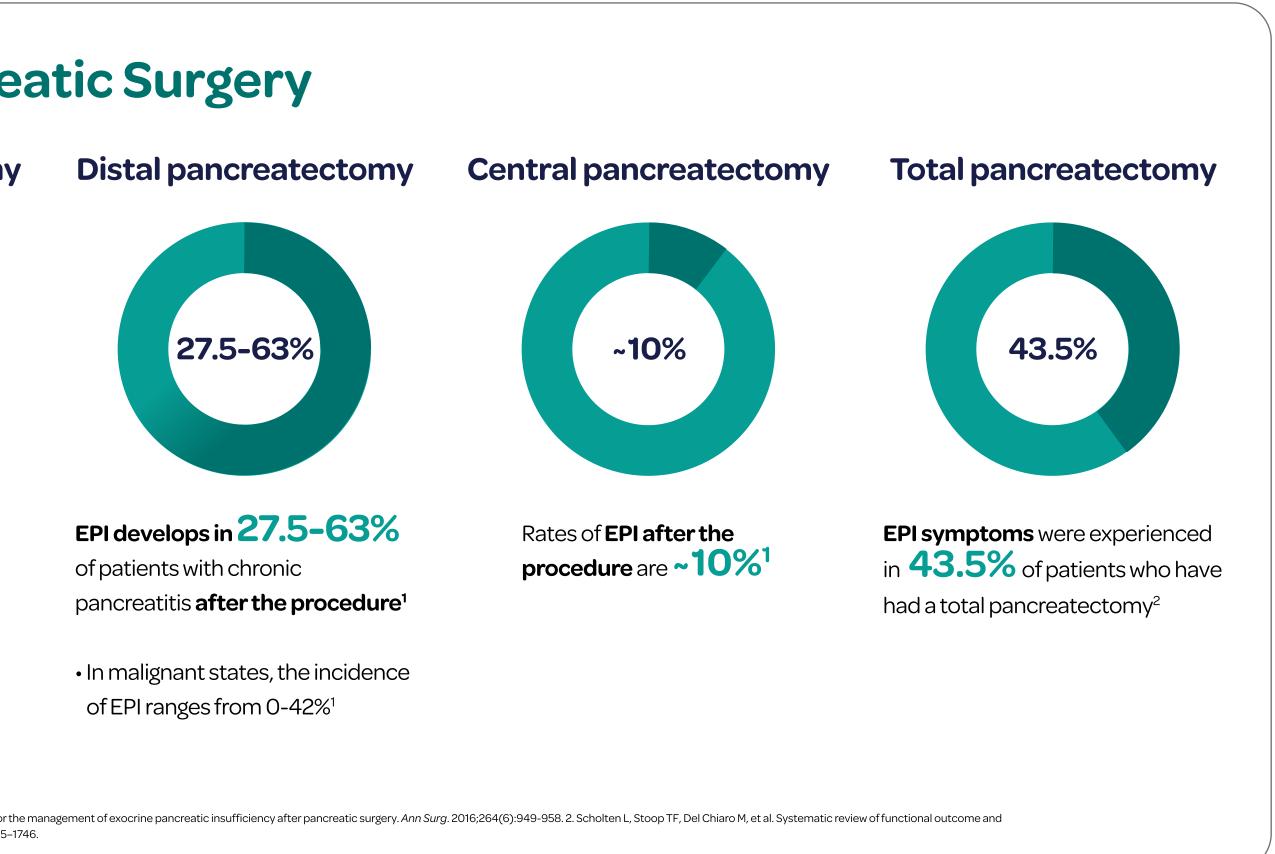
Other complications can include fatty liver, diabetes, and bone disease⁷

Types of Pancreatic Surgery

Pancreatoduodenectomy

Most studies show that >60%(range: 35-100%) of patients with chronic pancreatitis **develop** EPI after the procedure¹

• In malignant states, the incidence of EPI increases to 64-100%¹


1. Sabater L, Ausania F, Bakker OJ, et al. Evidence-based guidelines for the management of exocrine pancreatic insufficiency after pancreatic surgery. Ann Surg. 2016;264(6):949-958. 2. Scholten L, Stoop TF, Del Chiaro M, et al. Systematic review of functional outcome and quality of life after total pancreatectomy. Br J Surg. 2019;106(13):1735-1746.

EPI=exocrine pancreatic insufficiency. GI=gastrointestinal.

1. Berry AJ. Pancreatic surgery: indications, complications, and implications for nutrition intervention. Nutr Clin Pract. 2013;28(3):330-357. 2. Pappas S, Krzywda E, McDowell N. Nutrition and pancreaticoduodenectomy. Nutr Clin Pract. 2010;25(3):234-243. 3. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266. 4. Pezzilli R, Andriulli A, Bassi C, et al. Exocrine pancreatic insufficiency in adults: a shared position statement of the Italian Association for the Study of the Pancreas. World J Gastroenterol. 2013;19(44):7930-7946. 5. Decher N, Berry A. Post-Whipple: a practical approach to nutrition management. Pract Gastroenterol. 2012;36(8):30-42. 6. Muniz CK, dos Santos JS, Pfrimer K, et al. Nutritional status, fecal elastase-1, and 13C-labeled mixed triglyceride breath test in the long-term after pancreaticoduodenectomy. Pancreas. 2014;43(3):445-450. 7. Petzel MQB, Hoffman L. Nutrition implications for long-term survivors of pancreatic cancer surgery. Nutr Clin Pract. 2017;32(5):588-598.

Pancreatectomy

GI Complications Are Frequent **After Pancreatectomy**

GI Complications

- Exocrine pancreatic insufficiency^{1,3,4}
- Dumping syndrome²
- Delayed gastric emptying²
- Malnutrition⁵
- Small intestinal bacterial overgrowth⁶

Other complications can include fatty liver, diabetes, and bone disease⁷

EPI Is a Frequent Complication of Pancreatectomy

Clinical Considerations for Post-surgical EPI

The Frequency and Severity of EPI Post-surgery Depends On:

- Type of surgery (eg, partial resection or reconstruction vs total pancreatectomy)¹⁻⁴ •
- Quantity and quality of the remaining pancreatic tissue¹⁻⁴
- Resection of parts of stomach and duodenum^{1,2}
 - Changes in gut pH and delayed gastric emptying^{1,2}
- Ductal obstruction of the pancreatic anastomosis^{1,2}
- Formation of a pancreaticojejunostomy and hepaticojejunostomy on a Roux loop³
 - Potential asynchrony in the delivery of pancreatic secretions and bile³
- Timing of exocrine function assessment³
- Test used in assessment of exocrine function³

International Study Group in Pancreatic Surgery (ISGPS) Guideline

1. Sabater L, Ausania F, Bakker OJ, et al. Evidence-based guidelines for the management of exocrine pancreatic insufficiency after pancreatic surgery. Ann Surg 2016;264(6):949-958. 2. Lim PW, Dinh KH, Sullivan M, et al. Thirty-day outcomes underestimate endocrine and exocrine insufficiency after pancreatic resection. HPB (Oxfor 2016;18(4):360-366. 3. Phillips ME. Pancreatic exocrine insufficiency following pancreatic resection. Pancreatology. 2015;15(5):449-455. 4. Bartel MJ, Asbun H, Stauffer J, Raimondo M. Pancreatic exocrine insufficiency in pancreatic cancer: a review of the literature. Dig Liver Dis. 2015;47(12):1013-1020. 5. Gianotti L, Besselink MG, Sandini M, et al. Nutritional support and therapy in pancreatic surgery: a position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery. 2018;164(5):1035-1048.

EPI=exocrine pancreatic insufficiency. GI=gastrointestinal.

1. Berry AJ. Pancreatic surgery: indications, complications, and implications for nutrition intervention. Nutr Clin Pract. 2013;28(3):330-357. 2. Pappas S, Krzywda E, McDowell N. Nutrition and pancreaticoduodenectomy. Nutr Clin Pract. 2010;25(3):234-243. 3. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266. 4. Pezzilli R, Andriulli A, Bassi C, et al. Exocrine pancreatic insufficiency in adults: a shared position statement of the Italian Association for the Study of the Pancreas. World J Gastroenterol. 2013;19(44):7930-7946. 5. Decher N, Berry A. Post-Whipple: a practical approach to nutrition management. Pract Gastroenterol. 2012;36(8):30-42. 6. Muniz CK, dos Santos JS, Pfrimer K, et al. Nutritional status, fecal elastase-1, and 13C-labeled mixed triglyceride breath test in the long-term after pancreaticoduodenectomy. Pancreas. 2014;43(3):445-450. 7. Petzel MQB, Hoffman L. Nutrition implications for long-term survivors of pancreatic cancer surgery. Nutr Clin Pract. 2017;32(5):588-598.

ABBV-US-01157-MC

Regardless of the type of pancreatic resection or reconstruction, patients should be monitored carefully to assess for the presence of EPI.⁵

Pancreatectomy

GI Complications Are Frequent **After Pancreatectomy**

GI Complications

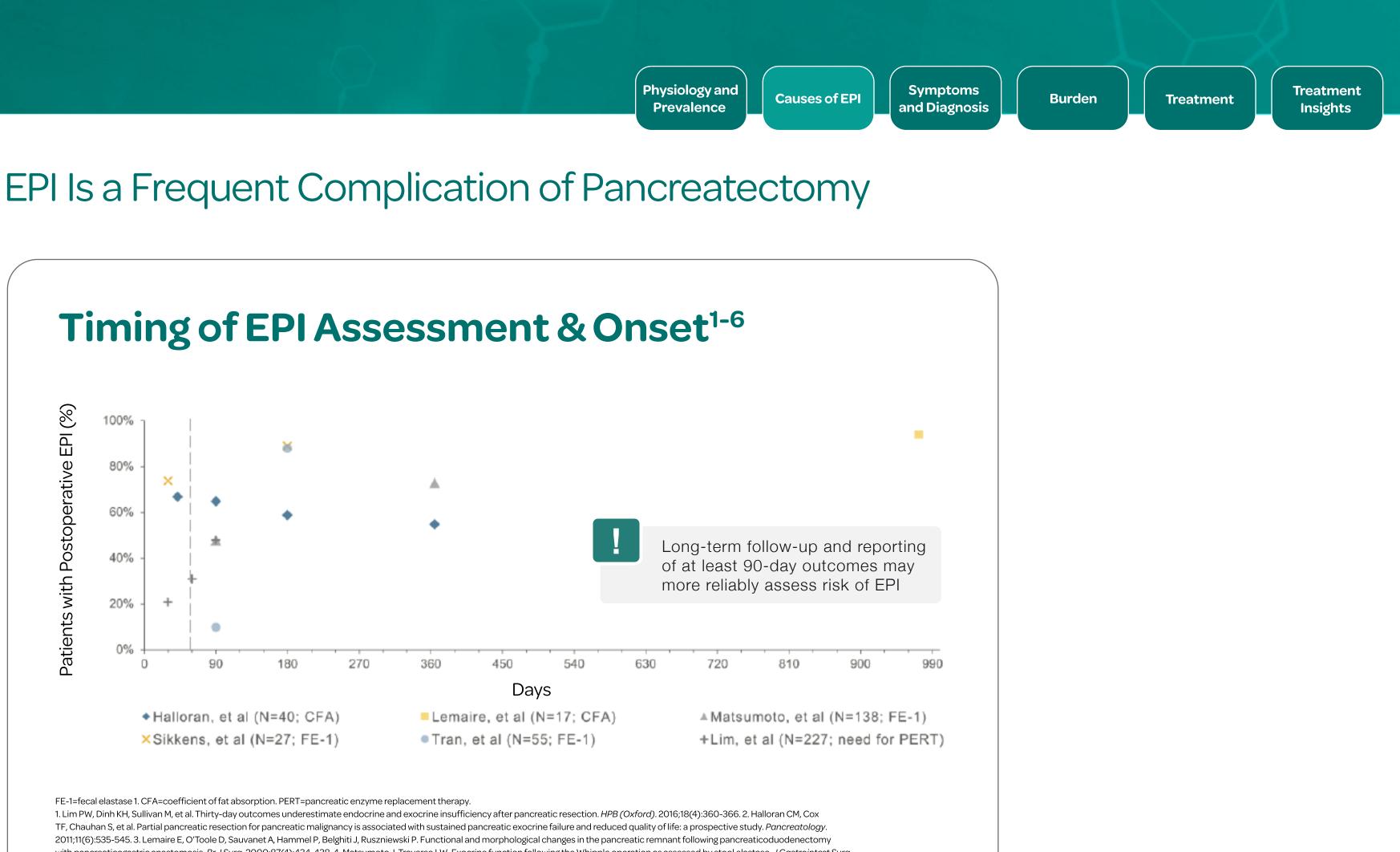
- Exocrine pancreatic insufficiency^{1,3,4}
- Dumping syndrome²
- Delayed gastric emptying²
- Malnutrition⁵
- Small intestinal bacterial overgrowth⁶

Other complications can include fatty liver, diabetes, and bone disease⁷

ABBV-US-01157-MC

EPI=exocrine pancreatic insufficiency. GI=gastrointestinal.

1. Berry AJ. Pancreatic surgery: indications, complications, and implications for nutrition intervention. Nutr Clin Pract. 2013;28(3):330-357. 2. Pappas S, Krzywda E, McDowell N. Nutrition and pancreaticoduodenectomy. Nutr Clin Pract. 2010;25(3):234-243. 3. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266. 4. Pezzilli R, Andriulli A, Bassi C, et al. Exocrine pancreatic insufficiency in adults: a shared position statement of the Italian Association for the Study of the Pancreas. World J Gastroenterol. 2013;19(44):7930-7946. 5. Decher N, Berry A. Post-Whipple: a practical approach to nutrition management. Pract Gastroenterol. 2012;36(8):30-42. 6. Muniz CK, dos Santos JS, Pfrimer K, et al. Nutritional status, fecal elastase-1, and 13C-labeled mixed triglyceride breath test in the long-term after pancreaticoduodenectomy. Pancreas. 2014;43(3):445-450. 7. Petzel MQB, Hoffman L. Nutrition implications for long-term survivors of pancreatic cancer surgery. Nutr Clin Pract. 2017;32(5):588-598.


Pancreatectomy

GI Complications Are Frequent **After Pancreatectomy**

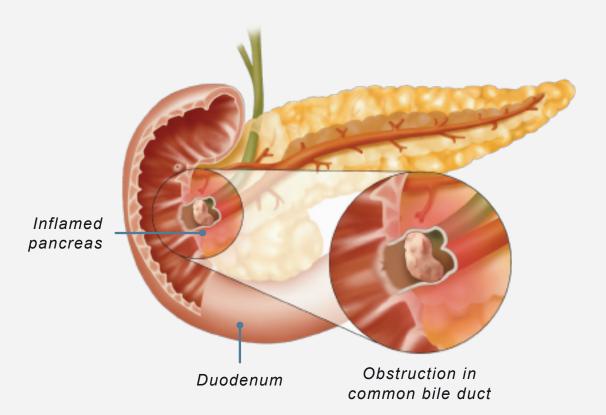
GI Complications

- Exocrine pancreatic insufficiency^{1,3,4}
- Dumping syndrome²
- Delayed gastric emptying²
- Malnutrition⁵
- Small intestinal bacterial overgrowth⁶

Other complications can include fatty liver, diabetes, and bone disease⁷

FE-1=fecal elastase 1. CFA=coefficient of fat absorption. PERT=pancreatic enzyme replacement therapy. 1. Lim PW, Dinh KH, Sullivan M, et al. Thirty-day outcomes underestimate endocrine and exocrine insufficiency after pancreatic resection. HPB (Oxford). 2016;18(4):360-366. 2. Halloran CM, Cox TF, Chauhan S, et al. Partial pancreatic resection for pancreatic malignancy is associated with sustained pancreatic exocrine failure and reduced quality of life: a prospective study. Pancreatology 2011;11(6):535-545.3. Lemaire E, O'Toole D, Sauvanet A, Hammel P, Belghiti J, Ruszniewski P. Functional and morphological changes in the pancreatic remnant following pancreaticoduodenectomy with pancreaticogastric anastomosis. Br J Surg. 2000;87(4):434-438. 4. Matsumoto J, Traverso LW. Exocrine function following the Whipple operation as assessed by stool elastase. J Gastrointest Surg. 2006;10(9):1225-1229.5. Sikkens EC, Cahen DL, de Wit J, Looman CW, van Eijck C, Bruno MJ. Prospective assessment of the influence of pancreatic cancer resection on exocrine pancreatic function. Bi J Surg. 2014;101(2):109-113. 6. Tran TC, van 't Hof G, Kazemier G, et al. Pancreatic fibrosis correlates with exocrine pancreatic insufficiency after pancreatoduodenectomy. Dig Surg. 2008;25(4):311-318.

EPI=exocrine pancreatic insufficiency. GI=gastrointestinal.


1. Berry AJ. Pancreatic surgery: indications, complications, and implications for nutrition intervention. Nutr Clin Pract. 2013;28(3):330-357. 2. Pappas S, Krzywda E, McDowell N. Nutrition and pancreaticoduodenectomy. Nutr Clin Pract. 2010;25(3):234-243. 3. Lindkvist B. Diagnosis and treatment of pancreatic exocrine insufficiency. World J Gastroenterol. 2013;19(42):7258-7266. 4. Pezzilli R, Andriulli A, Bassi C, et al. Exocrine pancreatic insufficiency in adults: a shared position statement of the Italian Association for the Study of the Pancreas. World J Gastroenterol. 2013;19(44):7930-7946. 5. Decher N, Berry A. Post-Whipple: a practical approach to nutrition management. Pract Gastroenterol. 2012;36(8):30-42. 6. Muniz CK, dos Santos JS, Pfrimer K, et al. Nutritional status, fecal elastase-1, and 13C-labeled mixed triglyceride breath test in the long-term after pancreaticoduodenectomy. Pancreas. 2014;43(3):445-450. 7. Petzel MQB, Hoffman L. Nutrition implications for long-term survivors of pancreatic cancer surgery. Nutr Clin Pract. 2017;32(5):588-598.

Acute Pancreatitis¹⁻⁴

Etiology of Acute Pancreatitis

- Acute pancreatitis is frequently caused by
- Obstruction of the common bile duct by stones¹
- Alcohol abuse¹
- Characterized by acute inflammation of the pancreas²
- Pancreatic necrosis occurs in ~20% of patients³

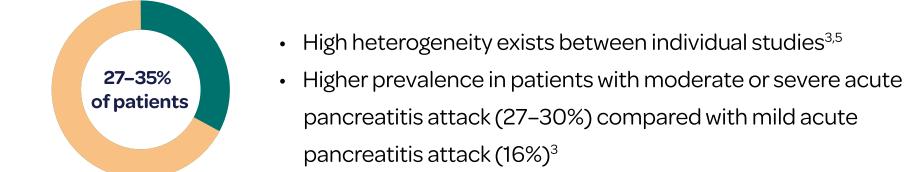
Incidence of Acute Pancreatitis

10-44 cases per 100,000 people every year

EPI=exocrine pancreatic insufficiency.

1. Wang GJ, Gao CF, Wei D, Wang C, Ding SQ. Acute pancreatitis: etiology and common pathogenesis. World J Gastroenterol. 2009;15(12):1427-1430. 2. Garber A, Frakes C, Arora Z, Chahal P. Mechanisms and management of acute pancreatitis. Gastroenterol. Res Pract. 2018;2018:6218798. 3. Hollemans RA, Hallensleben NDL, Mager DJ, et al. Pancreatic exocrine insufficiency following acute pancreatitis: systematic review and study level meta-analysis. Pancreatology. 2018;18(3):253-262. 4. Peery AF, Dellon ES, Lund J, et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology. 2012;143(5):1179-1187. 5. Huang W, de la Iglesia-García D, Baston-Rey I, et al. Exocrine pancreatic insufficiency following acute pancreatitis: systematic review and meta-analysis. Dig Dis Sci. 2019;64(7):1985-2005. 6. Capurso G, Traini M, Piciucchi M, et al. Exocrine pancreatic insufficiency: Prevalence, diagnosis, and management. Clinical and Experimental Gastroenterology. 2019;12:129–139.

ABBV-US-01157-MC



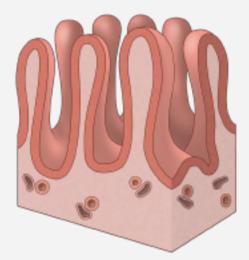
EPI in Acute Pancreatitis^{3,5,6}

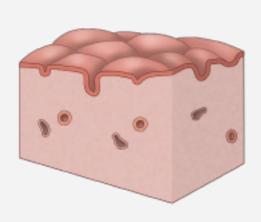
Multiple Potential Mechanisms Can Lead to EPI in Acute Pancreatitis³

- Ductal obstruction due to inflammation
- · Secondary impairment of hormonal mediators
- Damaged receptors controlling enzyme-releasing acinar cells
- Diminished pancreatic function following necrosis or surgical removal of necrosis

EPI Has Increased Prevalence in Moderate or Severe Acute Pancreatitis^{3,5}

Risk of EPI in Acute Pancreatitis^{3,5,6}


- Recurrence of acute pancreatitis
- Acute pancreatitis severity
- Extent of necrosis
- Alcoholic etiology
- Necrosectomy

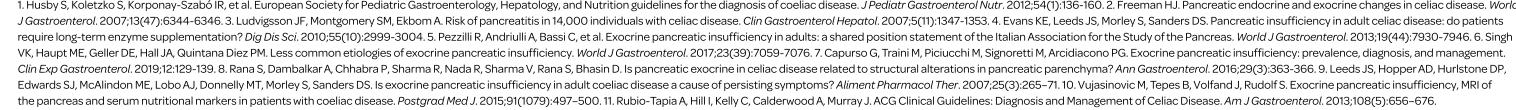

Celiac Disease¹⁻⁴

Etiology of Celiac Disease^{1,2}

- T-cell-mediated reaction to gluten that causes inflammatory injury to the villi of the small intestine and results in malabsorption¹
- Changes may be present in both the endocrine and exocrine functions of the pancreas²
- Gluten-free diet is essential¹

Healthy

Celiac Disease


The small intestine villi of a celiac patient (pictured on the right) are damaged, resulting in malabsorption.

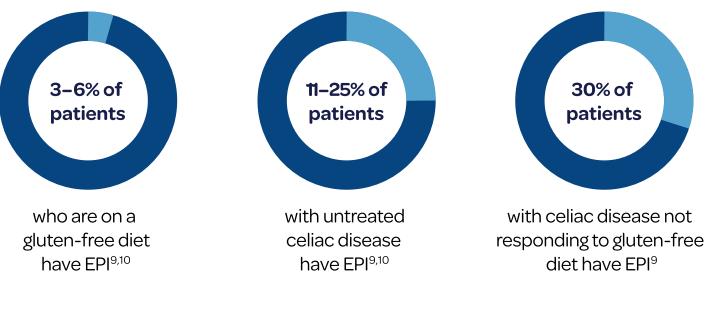
Prevalence of Celiac Disease^{3,4}

~1% in the United States and Europe

EPI=exocrine pancreatic insufficiency. CCK=cholecystokinin. ACG=American College of Gastroenterology.

ABBV-US-01157-MC

EPI in Celiac Disease⁵⁻¹¹


Potential Mechanisms of EPI in Celiac Disease

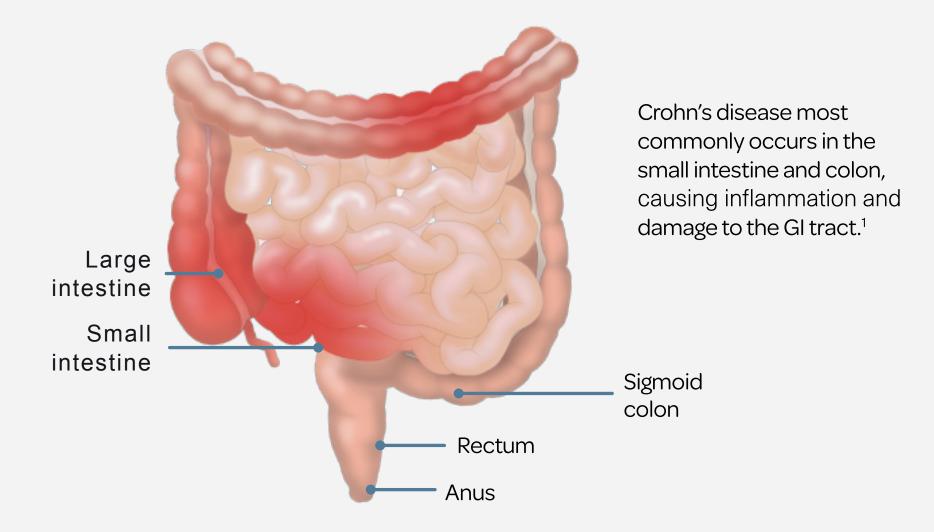
- Untreated celiac disease is associated with impaired intestinal hormonal stimulation of the pancreas⁵
 - Impaired synthesis, storage, and release of secretagogues (ie, CCK and secretin)⁶
 - Defective postprandial response (CCK stimulation) due to intestinal inflammation and mucosal villous atrophy^{6,7}
- Substantially impaired exocrine pancreatic function might be caused by comorbid chronic pancreatitis⁶
- Protein malnutrition, potentially due to untreated malabsorption, is associated with decreased pancreatic enzyme secretion and pancreatic structural changes⁶

Patients With Celiac Disease May Develop EPI

Prevalence of EPI in Patients With Celiac Disease7-11

• Resolves with a gluten-free diet in most patients

According to ACG clinical guidelines, cases of non-responsive celiac disease should be assessed for EPI.¹¹


1. Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54(1):136-160. 2. Freeman HJ. Pancreatic endocrine and exocrine changes in celiac disease. World

Crohn's Disease¹⁻²

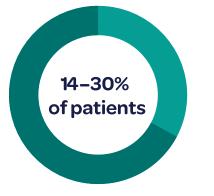
Etiology of Crohn's Disease

Crohn's disease causes chronic inflammation and damage to the GI tract¹

Incidence of Crohn's Disease²

Crohn's disease may affect as many as 780,000 people in the United States

EPI=exocrine pancreatic insufficiency. GI=gastrointestinal. IBD=inflammatory bowel disease. 1. The facts about inflammatory bowel diseases. Crohn's & Colitis Foundation of America. Published November 2014. Accessed September 21, 2020. 2. What is Crohn's & Colitis Foundation. Accessed November 16, 2018. 3. Singh VK, Haupt ME, Geller DE, Hall JA, Quintana Diez PM. Less common etiologies of exocrine pancreatic insufficiency. World J Gastroenterol. 2017;23(39):7059-7076. 4. Srinath AI, Gupta N, Husain SZ. Probing the association of pancreatitis in inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(2):465-475.


EPI in Crohn's Disease³⁻⁴

Potential Mechanisms of EPI in Crohn's Disease³⁻⁴

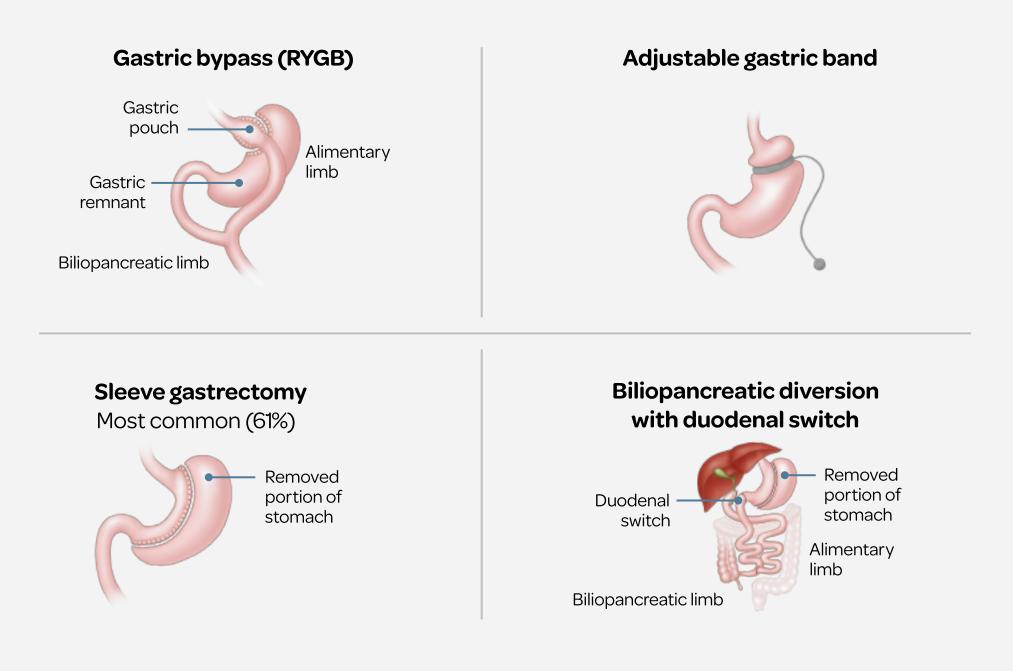
- Underlying pancreatitis
 - Pancreatic autoantibodies (present in ~1/3 of patients)
 - IBD treatments (eg, thiopurines, aminosalicylates, corticosteroids, intralipids) can cause pancreatitis
- Duodenal reflux due to inflammation may damage the pancreatic duct
- Reduced intestinal hormone secretion due to scarring/inflammation, which insufficiently stimulates the pancreas

Patients With Crohn's Disease May Develop EPI

Prevalence of EPI in Crohn's Disease³

Patients at Increased Risk of Developing EPI if Experiencing³:

- ≥3 bowel movements per day
- Loose stools
- History of surgery



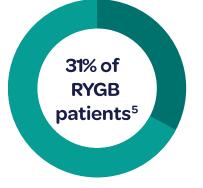
Gastric Surgery¹⁻³

Common Bariatric Procedures^{1,2}

- Obesity affects 42.4% of the adult population in the United States³
- From 2011–2018, there was a 59% increase in bariatric surgeries in the United States¹
 - 252,000 surgeries in 2018¹

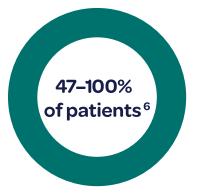
*Median age, 49 years; mean presurgical weight, 131.1 kg; female (92.3%). EPI=exocrine pancreatic insufficiency. RYGB=Roux-en-Y Gastric Bypass.

1. Estimate of bariatric surgery numbers, 2011-2018. American Society for Metabolic and Bariatric Surgery. Accessed September 21, 2020. 2. Vujasinovic M, Valente R, Thorell A, et al. Pancreatic exocrine insufficiency after bariatric surgery. *Nutrients*. 2017;9(11):1241. 3. Hales CM, Carroll DM, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. National Center for Health Statistics. Published 2020. Accessed September 21, 2020. 4. Antonini F, Crippa S, Falconi M, Macarri G, Pezzilli R. Pancreatic enzyme replacement therapy after gastric resection: an update. *Dig Liver Dis*. 2018;50(1):1-5. 5. Borbély Y, Plebani A, Kröll D, Ghisla S, Nett PC. Exocrine pancreatic insufficiency after Roux-en-Y gastric bypass. *Surg Obes Relat Dis*. 2016;12(4):790-794. 6. Lee AHH, Ward SM. Pancreatic exocrine insufficiency after total gastrectomy - a systematic review. *J Pancreas*. 2019;20(5):130–137. 7. Capurso G, Traini M, Piciucchi M, Signoretti M, Arcidiacono PG. Exocrine pancreatic insufficiency: prevalence, diagnosis, and management. *Clin Exp Gastroenterol*. 2019;12:129-139. 8. O'Keefe SJD, Rakitt T, Ou J, et al. Pancreatic and intestinal function post Roux-en-Y gastric bypass surgery for obesity. *Clin Transl Gastroenterol*. 2017;8(8):e112.


EPI in Gastric Surgery⁴⁻⁷

Multiple Potential Mechanisms Can Lead To EPI in Gastric Surgery⁴

- Altered gastric relaxation due to the absence of neural gastric reflexes
- Absence of neural gastric stimulation responsible for pancreatic secretion
- Rapid gastric emptying and asynchrony between gastric emptying and biliopancreatic secretion
- Extensive denervation of the pancreas due to lymph node dissection and truncal vagotomy


Patients Who Have Undergone Gastric Surgery May Develop EPI⁵⁻⁷

Prevalence of EPI in Bariatric Surgery

- Sleeve gastrectomy: some EPI expected, but there is a lack of robust clinical studies²
- Gastric banding: low likelihood of EPI²

Rate of EPI in Gastric Surgery

- Exact incidence unknown⁶
- Greater incidence in patients with total gastrectomy, duodenal bypass procedures, and vagal denervation^{6,7}

Pancreatic Cancer¹

Modifiable Risk Factors for Pancreatic Cancer¹

- Tobacco use
- Obesity
- Diabetes
- Chronic pancreatitis

Unmodifiable Risk Factors for Pancreatic Cancer¹

- Age
- Gender
- Race
- Family history
- Inherited genetic syndromes (eg, hereditary breast cancer, familial pancreatitis)

Incidence of Pancreatic Cancer²

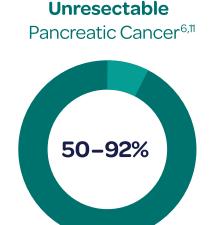
- In 2022, it is estimated that there will be 62,210 new cases of pancreatic cancer in the United States
- Currently the third leading cause of cancer-related death

EPI=exocrine pancreatic insufficiency.

1. American Cancer Society. Pancreatic Cancer Risk Factors. Accessed April 28, 2022. https://www.cancer.org/cancer/pancreatic-cancer/causes-risks-prevention/risk-factors.html 2. Cancer Stat Facts: Pancreatic Cancer. National Cancer Institute. Accessed April 25, 2022. https:// seer.cancer.gov/statfacts/html/pancreas.html 3. Papadoniou N, Kosmas C, Gennatas K, et al. Prognostic factors in patients with locally advanced (unresectable) or metastatic pancreatic adenocarcinoma: a retrospective analysis. *Anticancer Res.* 2008;28(1B):543-549. 4. Bartel MJ, Asbun H, Stauffer J, Raimondo M. Pancreatic exocrine insufficiency in pancreatic cancer: a review of the literature. *Dig Liver Dis.* 2015;47(12):1013-1020. 5. Phillips ME. Pancreatic exocrine insufficiency following pancreatic resection. *Pancreatology.* 2015;15(5):449-455. 6. Partelli S, Frulloni L, Minniti C, et al. Faecal elastase-1 is an independent predictor of survival in advanced pancreatic cancer. *Dig Liver Dis.* 2012;44(11):945-951. 7. Nemer L, Krishna SG, Shah ZK, et al. Predictors of Pancreatic Cancer-Associated Weight Loss and Nutritional Interventions. *Pancreas.* 2017;46(9):1152-1157. 8. Van Cutsem E, Arends J. The causes and consequences of cancer-associated malnutrition. *Eur J Oncol Nurs.* 2005;9 (suppl 2):S51-S63. 9. Ronga I, Gallucci F, Riccardi F, Uomo G. Anorexia-cachexia syndrome in pancreatic cancer: recent advances and new pharmacological approach. *Adv Med Sci.* 2014;59(1):1-6. 10. Mueller TC, Burmeister MA, Bachmann J, Martignoni ME. Cachexia and pancreatic cancer: are there treatment options?. *World J Gastroenterol.* 2014;20(28):9361-9373. 11. Sikkens EC, Cahen DL, de Wit J, Looman CWN, van Eijck C, Bruno MJ. A prospective assessment of the natural course of the exocrine pancreatic function in patients with a pancreatic head tumor. *J Clin Gastroenterol.* 2014;48(5):e43-e46. 12. Belyaev O, Herzog T, Chromik AM, Meurer K, Uhl W. Early and late postoperative changes in the quality of life after pancreatic surgery. *Langenbecks Arch Surg.*

EPI in Pancreatic Cancer³⁻¹¹

Multiple Potential Mechanisms Can Lead to EPI in Pancreatic Cancer³⁻⁶


- In resectable pancreatic cancer, degree of EPI following pancreatic resection is influenced by multiple factors, such as
 - Type of surgery³
 - Extent of remaining tissue⁴
- Unresectable pancreatic cancer
 - Pancreatic duct obstruction³
 - Pancreatic atrophy secondary to duct obstruction and fibrosis³⁻⁵
 - Ongoing destruction of pancreatic parenchyma by the tumor^{3,6}

EPI Contributes to the Multifactorial Weight Loss in Patients With Pancreatic Cancer ⁷⁻¹⁰

• At diagnosis of pancreatic ductal adenocarcinoma, 71.5% of patients had >5% weight loss⁷

Patients With Pancreatic Cancer May Develop EPI

Prevalence of EPI in Pancreatic Cancer^{6,11-13}

of patients with unresectable pancreatic cancer have EPI

of patients have EPI after pancreatic surgery

Type 1 Diabetes

Etiology of Type 1 Diabetes

• Typically has an early onset¹

RRF

• An autoimmune disease characterized by immune-mediated destruction of islet cells, leading to a loss of insulin production

Prevalence of Type 1 Diabetes

In 2018, ~1.6 million people in the United States had T1DM²

Includes ~187,000 children and adolescents

EPI=exocrine pancreatic insufficiency. T1DM=type 1 diabetes mellitus.

1. Singh VK, Haupt ME, Geller DE, Hall JA, Quintana Diez PM. Less common etiologies of exocrine pancreatic insufficiency. World J Gastroenterol. 2017;23(39):7059-7076. 2. Statistics about diabetes. American Diabetes Association. Accessed September 21, 2020. 3. Hardt PD, Ewald N. Exocrine pancreatic insufficiency in diabetes mellitus: a complication of diabetic neuropathy or a different type of diabetes? Exp Diabetes Res. 2011;2011:761950. 4. Piciucchi M, Capurso G, Archibugi L, Delle Fave MM, Capasso M, Delle Fave G. Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment. Int J Endocrinol. 2015;2015:595649.

EPI in Type 1 Diabetes^{1,3,4}

Potential Mechanisms of Pancreatic Damage in Patients With Diabetes

- The exact mechanism of exocrine dysfunction in T1DM is unclear¹
- Impaired acinar-islet interaction with imbalances in endocrine stimulation³
- Diminished trophic effects of insulin, resulting in pancreatic atrophy and fibrosis³
- Autonomic diabetic neuropathy and diabetic microangiopathy^{1,3}
- Presence of autoantibodies against exocrine tissue³

Patients With Type 1 Diabetes May Develop EPI

Prevalence of EPI in Type 1 Diabetes

- EPI in diabetes has been recognized, but the prevalence is not well-characterized^{3,4}
- Heterogeneity may be due to variability in specificity and types of measurements for pancreatic function⁴

Symptoms and Diagnosis

There Is No Single Convenient and Specific Diagnostic Test for EPI¹⁻³

Include EPI in the Differential Diagnosis Due to Overlapping Symptomatology⁴⁻¹⁴

Test ¹	Description ¹	Limitations ¹	Symptoms	EPI ⁴	IBS-D ^{5,6}	SIBO ⁷	IBD ⁸	Celiac Disease ⁹
Direct pancreatic function	 Peak bicarbonate concentration following secretin stimulation Cutoff suggestive of EPI: <80 mEq/L over 60 min 	InvasiveLimited availability	Diarrhea Abdominal Pain Bloating	-				
Quantitative fecal fat	 Amount of fat remaining in stool compared with fat content of diet Cutoff suggestive of EPI: >7 g/100 g of fat ingested 	Limited useNot specific for EPI	Flatulence					
FE-1 elas	 Amount of pancreatic elastase in stool Cutoff suggestive of EPI: <200 μg/g stool 	 Less sensitive for mild EPI False positives with watery stool 	Clinical Features	EPI	IBS-D	SIBO	IBD	Celiac Disease
			Symptom Onset Related to Food Intake	X ^π		X ⁷ Particularly foods high in sugar and fiber™	X ¹⁰ Symptoms ma occur despite fasting (ileitis) ¹	(or triggered by gluten),

Nocturna Symptom

> Stool Quality

Urgency

Fecal Incontinen

Unexplaine Weight Los

ABBV-US-01157-MC

Physiology and Prevalence

al es	EPI	IBS-D	SIBO	IBD	Celiac Disease
om ated take	X ^π		X ⁷ Particularly foods high in sugar and fiber ¹⁰	X ¹⁰ Symptoms may occur despite fasting (ileitis) ¹⁰	X ¹⁰ Gluten dependent (or triggered by gluten), improves with fasting ¹⁰
nal ms		Symptoms improve at night ¹⁰		X ¹⁰ Ileitis	
y	Fatty ¹⁰ Stool may not be very loose ¹⁰	Watery ¹⁰	Fatty ¹⁰	Bloody/ Purulent ¹⁰	Watery/Fatty ¹⁰
Ŷ	X ¹³	X ⁵		X ⁸	
nce		X ¹⁴		X ¹²	
ned oss	Χ ¹¹		Only in extreme cases ⁷	X ¹⁰	X ₉

>

Burden

abbvie

Hiding in Plain Sight

Exocrine Pancreatic Insufficiency In Pancreatic Disease

Practical Approaches for the Healthcare Professional

J. Enrique Domínguez-Muñoz, MD, PHD

Professor of Medicine

Director, Department of Gastroenterology and Hepatology University Hospital of Santiago de Compostela, Spain

EPI in Pancreatic Diseases | Approved April 2022 ABBV-US-01186-E v1.0 | Company Confidential © 2021

Pancreatic Enzyme Replacement Therapy (PERT) Is the Standard of Care for EPI

What is the role of PERT in Exocrine Pancreatic Insufficiency (EPI)?

PERTs are pancreatic enzyme preparations consisting of pancrelipase, an extract containing multiple animal-derived enzyme classes, including lipases, proteases, and amylases.¹ PERT is the cornerstone of treatment for EPI.²

FDA Approved Label. Accessed January 22, 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020725s000lbl.pdf.
 Othman MO, Harb D, Barkin JA. Introduction and practical approach to exocrine pancreatic insufficiency for the practicing clinician. Int J Clin Pract. 2018;72(2).

EPI=exocrine pancreatic insufficiency

ABBV-US-01157-MC

>

Treatment

Pancreatic Enzyme Replacement Therapy (PERT) Is the Standard of Care for EPI

Administration

How is PERT administered?

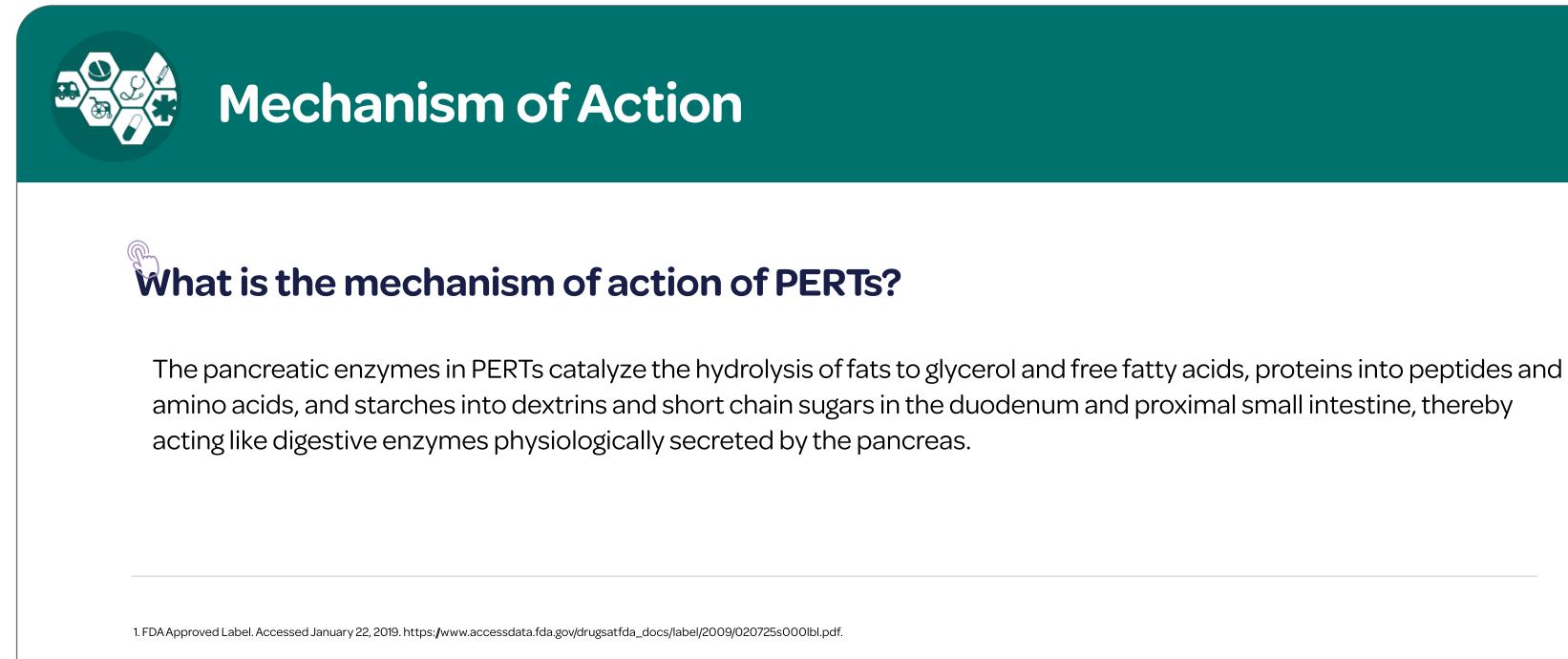
PERT is orally administered as capsules or tablets and is taken during meals or snacks, with sufficient fluid.^{1,2} PERT should be swallowed whole and should not be crushed or chewed.

1. FDA Approved Label. Accessed February 21, 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022542s000lbl.pdf. 2. FDA Approved Label. Accessed February 21, 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020725s000lbl.pdf.

EPI=exocrine pancreatic insufficiency.

ABBV-US-01157-MC

spacks with sufficient fluid ^{1,2} PFRT should


<

>

Treatment

Pancreatic Enzyme Replacement Therapy (PERT) Is the Standard of Care for EPI

EPI=exocrine pancreatic insufficiency

Treatment

Pancreatic Enzyme Replacement Therapy (PERT) Is the Standard of Care for EPI

What is the recommended dosage of PERT for patients with EPI?

PERT may be dosed based on fat ingestion or actual body weight. The initial starting dose and increases in the dose should be individualized based on clinical symptoms, the degree of steatorrhea present, and the fat content of the diet.

In children > 4 years and in adults, enzyme dosing should begin with 500 lipase units/kg of body weight per meal to a maximum of 2,500 lipase units/kg of body weight per meal (or < 10,000 lipase units/kg of body weight per day), or less than 4,000 lipase units/g fat ingested per day.

Usually, half of the prescribed dose for an individualized full meal should be given with each snack.

1. FDA Approved Label. Accessed January 22, 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020725s000lbl.pdf.

ABBV-US-01157-MC

EPI=exocrine pancreatic insufficiency.

>

Treatment Insights

EPI Uncovered¹

Don't Let Digestive Discomfort Become the "New Normal"

- A survey conducted online by Harris Poll on behalf of the American Gastroenterological Association (AGA) and sponsored by AbbVie shed light on what the public and physicians know about the role of the pancreas in gastrointestinal (GI) health, and exocrine pancreatic insufficiency (EPI).
- The EPI Uncovered survey was conducted with 1,001 adults who have experienced at least two GI issues three or more times in the past three months (patients) and 500 health-care practitioners, including 250 primary care physicians (PCPs) and 250 gastroenterologists (Gls).

60 to 70 million people in the U.S.

live with digestive conditions, ¹ and many are chronic.

The survey suggests that speaking transparently with a physician-and elevating the issue to a gastroenterologist-may help to achieve the right diagnosis the first time.

Patients wait nearly

4 years

to see a doctor about their GI symptoms, on average.

WHY do they wait?

3 out of **5** patients

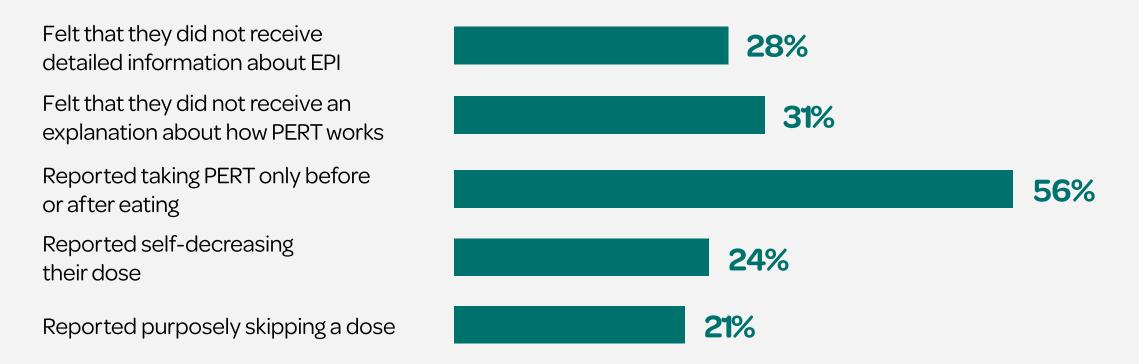
who found it difficult to discuss their GI symptoms with their HCP (60%) said it was due to embarrassment. But EPI is often not on the radar, even among those with digestive discomfort...

are **not aware** 78 of what the symptoms of EPI are.

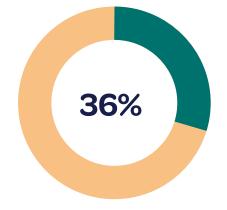
About 1 in 4

patients eventually diagnosed with EPI were **diagnosed with** a different condition **prior**, according to PCPs (25%) and GIs (24%).

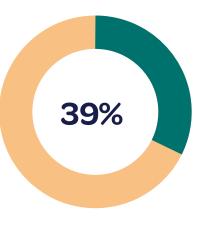
EPI=exocrine pancreatic insufficiency. HCP=healthcare professional. PERT=pancreatic enzyme replacement therapy. IRB=institutional review board. 1. EPI Uncovered. American Gastroenterological Association website. Published October 24, 2016. Accessed May 5, 2022. https://s3.amazonaws.com/ agaemailassets/images/EPI_Uncovered_AGA_Survey_Infographic.pdf 2. Barkin JA, et al. Am J of Gastroenterol. 2021;116;S19-S20 3. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Digestive Diseases Statistics for the United States. Accessed August 2016. http://www.niddk.nih.gov/ health-information/health-statistics/Pages/digestive-diseases-statistics-for-the-united-states.aspx


Patients' Insights²

PERT Dosing, Administration, and Follow-up


Data collected from patients with exocrine pancreatic insufficiency (EPI) indicate gaps in patients' understanding of dosage and administration of pancreatic enzyme replacement therapy (PERT), PERT dosing and patients' follow-up.

An IRB-approved online survey was conducted with 75 patients with EPI (or their caregivers).²


Patients' Assessment of EPI and PERT Understanding

Patients' Reports on PERT Dosing and Follow-up

Respondents taking PERT doses lower than the dosing recommendations of the American College of Gastroenterology (ACG) Guidelines for chronic pancreatitis (< 40,000 LU/meal)

Respondents reporting absence of follow-up by their physician since start of PERT

